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My research focuses on every component of statistical phylogenetics, from model development and ad-
vanced inference techniques to under-the-hood parallel computation libraries. My efforts have one central
goal: solving biological questions. Advances in genome sequencing technology are generating genetic data
at an ever-increasing pace. This burst of data provides opportunities to look at the underlying biological pro-
cesses that generate evolutionary patterns. However, these opportunities are accompanied by both statistical
and computational challenges that I combat with a mix of theory and practical implementations.

Theoretical phylogenetic method development

Scalable phylogenetic gradients. Likelihood evaluation is usually con-
sidered the computational bottleneck in phylogenetic studies. Even
worse is calculating the likelihood gradient for parameter inference.
Several groups have recognized that replacing one transition probabil-
ity matrix with its differential and then completing a post-order traver-
sal yields the derivative with respect to (w.r.t.) a single branch. Popular
phylogenetic maximum likelihood estimation (MLE) software such as
GARLI and RAxML (arguably the fastest available) employ this idea
for local optimization. However, in this manner, an analytic gradient
for optimization w.r.t. all branches requires O(N2) operations where N
is the number of sequences. In Ji et al. (2020), we complement the post-
order Felsenstein’s pruning algorithm with its pre-order traversal that
calculates the gradient w.r.t. all branches in O(N). We find dramatic
computational improvement (see Table 1).

Example No. Rates Speed-up
West Nile 206 126 ×
Lassa 420 168 ×
Dengue 702 234 ×

Table 1: MLE inference speedups
per BFGS optimization iteration
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Figure 1: Posterior sampling
efficiency on all branch-specific
evolutionary rate We bin parame-
ters by their ESS/s values.

Phylogenetic Hamiltonian Monte Carlo (HMC). HMC is an advanced
Markov chain Monte Carlo method that employs deterministic dy-
namics to intelligently generate high-dimensional proposal states, af-
ter which a Metropolis accept-reject step with usually high accep-
tance rates ensures convergence to a target distribution of interest.
HMC promises scalability, but only with inexpensive evaluations of
the gradient. Our results on inferring the branch-specific evolutionary
rates demonstrate that HMC outperforms the univariate Metropolis-
Hastings transition kernels as employed in current mainstream soft-
ware (Figure 1).

Efficient divergence time estimation through node height to ratio transform. To tackle divergence time
estimation with HMC, we developed a reparameterization that transforms all internal node heights into a
series of independent ratios bounded by [0, 1] (Ji et al., 2023). The parameterization works for both concurrent
and serially sampled data. Our method both resolves a mixing issue in the West Nile virus example (Figure 2)
and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples.

Relaxed random walk models (RRW) at scale. RRW models of trait evolution introduce branch-specific rate
multipliers to modulate the variance of a standard Brownian diffusion process along a phylogeny and more
accurately model overdispersed biological data. In Fisher et al. (2021), we develop a scalable method that
resembles the phylogenetic gradient for CTMCs on diffusion processes. We further extended the work with

https://scholar.google.com/citations?user=YH4BbIMAAAAJ&hl=en
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shrinkage priors to resemble a random local clock model that is previously intractable for large datasets
(Fisher et al., 2023).
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Figure 2: Trace plot of four height
parameters indicated on a WNV
phylogeny. I. and II. are trace plots
with univariable samplers, III. and
IV. are trace plots with an HMC
sampler for equal runtime.
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Figure 3: Maximum clade credi-
bility tree under shrinkage-clock
of mammalian and rodent ra-
diation. Numbers on a branch
indicates the posterior probability
of a new clock. For comparison,
local clocks of the random local
clock (RLC) model are depicted as
black triangles.
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Figure 4: Hawkes model posterior
mean rates for the 1367 (of 1610)
RNA-sequenced viral samples for
which date/location data are avail-
able in 2014 to 2016 Ebola outbreak
in West Africa.

Phylo-Hawkes models. Self-exciting spatiotemporal Hawkes processes
have found increasing use in the study of large-scale public health
threats. In Holbrook et al. (2022a), we developed a flexible Hawkes
model that incorporates different levels of spatial uncertainty of sam-
pling locations. In Holbrook et al. (2022b), we employed a Hawkes
process to infer viral contagiousness in a Bayesian analysis of 23, 421
viral cases from the 2014 to 2016 Ebola outbreak in West Africa, of
which only a subset of 1610 samples have genomic information (Fig-
ure 4).

Gene conversion in multigene family evolution. Interlocus gene con-
version (IGC) homogenizes repeats and induces evolutionary depen-
dence between sequence positions. While genomes can be repeat-rich,
the evolutionary importance of IGC is poorly understood, largely be-
cause of a lack of statistical tools. In Ji et al. (2016), we showed how
to quantify IGC via a one-parameter extension to any existing substi-
tution model. The key idea is to jointly treat corresponding positions
in different paralogs so that codon (or nucleotide) substitutions orig-
inating with both point mutation and IGC could be considered. We
evaluated the approach with 14 data sets of yeast ribosomal protein
genes and found the percentage of codon substitutions that originate
with IGC rather than point mutation to range from 20% to 38%. Con-
ventionally, IGC is ignored and these substitutions would be misat-
tributed to point mutation. Our subsequent unpublished work on du-
plicated protein-coding mammalian genes has estimated that slightly
more than 10% of codon substitutions originate with IGC.

In Yang et al. (2023), we improved our 2016 model to assess how
much paralog homogenization can be attributed to IGC mutation ver-
sus correlated selective pressure in paralogous genes. In that study,
we detected substantial IGC following an ancient whole genome du-
plication in teleosts. Given that conventional treatments of molecu-
lar evolution ignore IGC and that repetitive DNA constitutes a high
proportion of so many genomes, we are extending our IGC research
in multiple directions. We have ongoing efforts to examine IGC in
segmentally-duplicated primate genes. We have extended our 2016
model with a composite likelihood procedure that infers IGC tract
length to model spatial correlations between sites and are investigat-
ing how IGC mutation rates are influenced by paralog divergence.
My python-based open-source software is freely available on GitHub
https://github.com/xji3/IGCexpansion.

https://github.com/xji3/IGCexpansion
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Parallel numerical implementation

Massive parallelization of pre- and post-order traversals. Paralleliza-
tion is growing as a dominant theme in large-scale statistical inference
with hardware ranging from clusters of independent compute nodes
to multithreaded multicore processors to parallel coprocessors such
as graphics processing units (GPUs). Capitalizing on these hardware
features in software implementation is emerging as the most impor-
tant task facing a computational statistician. To further advance our
linear-time gradient algorithms, we have designed and implemented a
double-bock architecture (Figure 5) for pre- and post-order partial up-
dates and their product reductions on GPUs with a cuda implemen-
tation for NVIDIA products as well as an OpenCL implementation
for AMD and Intel products in the software package BEAGLE (Gan-
gavarapu et al., 2024). At the same time, a vectorized CPU implemen-
tation of our linear-order gradient algorithms in (Ji et al., 2020, 2023)
using streaming SIMD extensions (SSE) delivers better performance
than general-purpose automatic differentiation methods for the appli-
cation of phylogenetic variational inference (Fourment et al., 2023).
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Figure 5: Double block design for
pre- and post-order partial update
and reductions on GPUs

Massively parallelized spatiotemporal Hawkes model gradient. To
make our work on Phylo-Hawkes models computationally tractable,
we implemented high-performance parallel implementations of the
gradient of the log-likelihood w.r.t. spatial locations of our spatiotem-
poral Hawkes model (Figure 6) (Holbrook et al., 2022a,b).
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Figure 6: Speedups for the spa-
tiotemporal Hawkes process
gradient evaluations.

Collaborative work

Collaborations constitute a big proportion of my research. An applied statistician should never work alone
— we advance biology by collaborating with experimental biologists, developing statistical methods tin-
kered towards specific biological hypothesis and providing software. I am collaborating with virologists
interested in learning the evolution and diffusion patterns of various viruses through space and time and
to test correlations of factors with key events in their evolution. I am also collaborating with systematists
interested in population structure of sub-species and their geographic distribution models. Since joining Tu-
lane University, I have established promising collaborations with cancer biologists using Drosophila model
to study cancer evolution.

International consortia fighting infectious diseases. Genomic data furnish one major asset in the fight against
infectious diseases. Historical information contained in viral sequences contributes to better insight into
viral emergence and early transmission dynamics, even before systematic epidemiological surveillance can
initiate. As a developer of the BEAST and BEAGLE development team, I provide scalable state-of-the-
art statistical methods to help virologists and public health decision makers combat viral epidemics. For
example, MCMC sampling of branch-specific CTMC rate-multipliers drains > 95% of total computation
effort while reconstructing the 2020 SARS-CoV-2 resurgence in Europe that benefits from the speedups of
our linear-time algorithms and HMC development (Lemey et al., 2021).

Evolutionary biology fighting cancer. I am collaborating with Dr. Wu-Min Deng from the Medical School
at Tulane University to provide bioinformatics assistance. Using a Drosophila tumor model, in which onco-
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genic Notch drives tumorigenesis in an epithelial transition zone, we have found that tumor progression is
driven by a combination of polyploid mitosis, endoreplication, and depolyploidization. These tumors show
remarkable levels of DNA double-stranded breaks and chromosome instabilities. In these tumors, copy num-
ber variations and polyaneuploidy (hallmarks of lethal cancer) are increased in more advanced tumors that
have been transplanted into host flies for multiple generations. We are developing statistical methods that
draw information jointly from bulk and single-cell somatic DNA data to learn the evolutionary dynamics of
these copy number variations in tumors.
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